skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nunn, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hyperspectral imaging (HSI) technology has been increasingly used in Earth and planetary sciences. This imaging technique has been successfully tested on ice cores using VNIR (visible and near-infrared, 380-1000 nm) (Garzonio et al., 2018) and near-infrared (900 - 1700 nm) (McDowell et al, 2023)  line-scan cameras. Results show that  HSI data greatly expand ice core line-scan imaging capabilities, previously used with gray or RGB cameras (see summary in Dey et al., 2023). Combinations of selected HSI bands from the hyperspectral data cube improve feature detection in ice core stratigraphy, and map distribution of volcanic material, dust, air bubbles, fractures, and ice crystals in ice cores. Captured spectral information provides unique fingerprints for specific materials present in ice cores. This method helps to guide ice core sampling because it provides non-destructive, rapid visualization of microstructural properties, layering, bubble contents, increases in dust, or presence of  tephra material. Precise identification of these atmospheric components  is important for understanding past climate drivers reconstructed from ice cores. As part of the COLDEX project (Brook et al., this meeting) we adapted the SPECIM SisuSCS HSI system for ice core imaging. The ice core scanning system is housed inside the ca. -20ºC main NSF ICF freezer, and externally computer-controlled. The operator monitors scanning operations and communicates with personnel inside of the freezer via radio.  The system is equipped with a SPECIM FX10 camera that measures up to 224 bands in the VNIR range. We modified the ice core holder tray and installed a heated enclosure for the camera. The system uses SCHOTT DCR III Fiber Optic light sources with an OSL2BIR bulb from Thorlabs. IR filters are removed to extend the light spectral range beyond the 700 nm limit without heating the ice core surface during rapid (<5 minutes) scanning of an entire meter-long section. Emitted light enters ice at a 45º angle from two top and two bottom light sources. To calibrate absolute reflectance we use three Spectralon panels with 100, 50 and 20% reflectance values with every scan as well as several secondary reflective standards and USAF targets for geometric corrections. We are developing Python-based open source data processing routines and currently comparing HSI data with existing ice core physical and chemical measurements. The goal is to fully integrate the ice core HSI system with ice core processing at the NSF ICF. Dey et al., 2023. Application of Visual Stratigraphy from Line-Scan Images to Constrain Chronology and Melt Features of a Firn Core from Coastal Antarctica. Journal of Glaciology 69(273): 179–90. https://doi.org/10.1017/jog.2022.59.Garzonio et al., 2018. A Novel Hyperspectral System for High Resolution Imaging of Ice Cores: Application to Light-Absorbing Impurities and Ice Structure. Cold Regions Science and Technology 155: 47–57. https://doi.org/10.1016/j.coldregions.2018.07.005.McDowell et al., 2023. A Cold Laboratory Hyperspectral Imaging System to Map Grain Size and Ice Layer Distributions in Firn Cores. Preprint. Ice sheets/Instrumentation. https://doi.org/10.5194/egusphere-2023-2351. 
    more » « less
  2. This data set is part of a joint international effort for the East GReenland Ice-core Project (EGRIP), which has retrieved an ice core by drilling through the Northeast Greenland Ice Stream (NEGIS, 75.63°N (North), 35.98°W (West)). Ice streams are responsible for draining a significant fraction of the ice from the Greenland Ice Sheet (GIS), and the project was developed to gain new and fundamental information on ice stream dynamics, thereby improving the understanding of how ice streams will contribute to future sea-level change. The drilled core also provides a new record of past climatic conditions from the northeastern part of the GIS. The project has many international partners and is managed by the Centre for Ice and Climate, Denmark with air support carried out by US ski-equipped Hercules aircraft managed through the US (United States) Office of Polar Programs, National Science Foundation. As of May 2022, approximately 2099.2 m (meters) of ice core have been recovered from the combined efforts of drilling operations in 2017, 2018, and 2019. Here we present records of stable isotopes of oxygen and hydrogen from 21.5 meters to 2120.7 m depth. Bedrock is estimated to be at a depth of approximately 2550 m; the remaining ice is expected to be recovered in the 2022 and 2023 field seasons. The data product presented here is supported by the National Science Foundation project: Collaborative Research: The fingerprint of abrupt temperature events throughout Greenland during the last glacial period. Award # 1804098. 
    more » « less
  3. This data set is part of a joint international effort for the East GReenland Ice-core Project (EGRIP), which has retrieved an ice core by drilling through the Northeast Greenland Ice Stream (NEGIS, 75.63°N (North), 35.98°W (West)). Ice streams are responsible for draining a significant fraction of the ice from the Greenland Ice Sheet (GIS), and the project was developed to gain new and fundamental information on ice stream dynamics, thereby improving the understanding of how ice streams will contribute to future sea-level change. The drilled core also provides a new record of past climatic conditions from the northeastern part of the GIS. The project has many international partners and is managed by the Centre for Ice and Climate, Denmark with air support carried out by US ski-equipped Hercules aircraft managed through the US (United States) Office of Polar Programs, National Science Foundation. As of May 2022, approximately 2099.2 m (meters) of ice core have been recovered from the combined efforts of drilling operations in 2017, 2018, and 2019. Here we present records of stable isotopes of oxygen and hydrogen from 21.5 meters to 2120.7 m depth. Bedrock is estimated to be at a depth of approximately 2550 m; the remaining ice is expected to be recovered in the 2022 and 2023 field seasons. The data product presented here is supported by the National Science Foundation project: Collaborative Research: The fingerprint of abrupt temperature events throughout Greenland during the last glacial period. Award # 1804098. 
    more » « less
  4. null (Ed.)
    Abstract An intermediate-depth (1751 m) ice core was drilled at the South Pole between 2014 and 2016 using the newly designed US Intermediate Depth Drill. The South Pole ice core is the highest-resolution interior East Antarctic ice core record that extends into the glacial period. The methods used at the South Pole to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the National Science Foundation Ice Core Facility (NSF-ICF), and the methods used to process and sample the ice at the NSF-ICF are described. The South Pole ice core exhibited minimal brittle ice, which was likely due to site characteristics and, to a lesser extent, to drill technology and core handling procedures. 
    more » « less